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Abstract

We establish exact mathematical links between the n-dimensional anisotropic and isotropic Green’s functions for
diffusion phenomena for an infinite space, a half-space, a bimaterial and a multilayered space. The purpose of this work
is not to attempt to present a solution procedure, but to focus on the general conditions and situations in which the
anisotropic physical problems can be directly linked with the Green’s functions of a similar configuration with isotropic
constituents. We show that, for Green’s functions of an infinite and a half-space and for all two-dimensional configu-
rations, the exact correspondences between the anisotropic and isotropic ones can always be established without any
regard to the constituent conductivities or any other information. And thus knowing the isotropic Green’s functions
will readily provide explicit expressions for anisotropic Green’s functions upon back transformation. For three- and
higher-dimensional bimaterials and layered spaces, the correspondence can also be found but the constituent conduc-
tivities need to satisfy further algebraic constraints. When these constraints are fully satisfied, then the anisotropic
Green’s functions can also be obtained from those of the isotropic ones, or at least in principle.
© 2005 Elsevier Ltd. All rights reserved.

1. Introduction

Finding Green’s function for certain physical phenomena is one of the fundamental subjects in mathe-
matical physics. For example, Green’s functions for an unbounded space could serve as a theoretical basis
in boundary integral formulation, in finding field solutions for boundary valued problems through
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superpositions, and in estimating the effective properties of heterogeneous media. Classical fundamental
solutions have been known for decades, such as in conduction, elasticity, poroelasticity and piezoelectricity
(see for instance Ting, 1996; Norris, 1994; Chen, 1993 and the references contained therein). Among various
physical phenomena, the mathematics of (two-dimensional) steady-state heat conduction (equivalent to
anti-plane shear deformation in elastic cylindrical bodies) is probably the simplest. And thus it sometimes
permits us to explore the Green’s functions in a generally anisotropic setting and in a higher-dimensional
space. For certain non-homogeneous configurations, it is also possible to derive the Green’s functions ana-
lytically. For example, in a recent study (Kuo and Chen, 2005), they have analytically derived the Green’s
functions in conduction for an exponentially graded anisotropic solid in simple, closed forms.

In this work, we are concerned with the n-dimensional anisotropic Green’s functions in conduction for
an unbounded space, a half-space, a bimaterial and a multilayered space. The purpose of this work is not to
attempt to present a solution procedure for these boundary valued problems, but to focus on the general
conditions and situations in which the physical problems for anisotropic solids can be directly linked with
the corresponding Green’s functions of a similar configuration but with isotropic constituents. When the
latter solutions are available or can be resolved, one can then obtain the anisotropic Green’s functions upon
back transformation, or at least in principle. In the formulation, we make use of an affine coordinate trans-
formation (Sokolnikoff, 1956; Milton, 2002) for all configurations. In related subjects, the idea of an affine
transformation was employed by Sokolnikoff (1956, §51) and Horgan and Miller (1994) in showing how the
torsion problem for an orthotropic shaft can be reduced to that of an isotropic one, and by Milton (2002) in
estimating the effective conductivities of an ellipsoidal assemblage. In the present context, for each constit-
uent region in a bimaterial or in a layered space, we introduce a particular transformation matrix relevant
to its conductivity tensor, and possibly along with a constant shifting vector. The field in each region is then
governed by a standard Laplace equation, with a certain modification on the boundary term and/or the
interfacial continuity conditions. For Green’s functions for a half-space, three different kinds of homoge-
neous boundary conditions in conductions are considered (Carslaw and Jaeger, 1959). For the first-kind
boundary condition the temperature is set equal to zero along the boundary; for the second-kind the nor-
mal component of the heat flux is taken to be zero; for the third kind a linear combination of the temper-
ature and the normal component of the heat flux is set to be zero. Perfect bonding conditions are assumed
to prevail at interfaces between any two adjacent regions for a layered medium or in a bimaterial. We show
that the interfacial continuity conditions and the boundary term under the affine transformation remain
intact. But for three- and higher-dimensional spaces the interfacial points may separate. To ensure the
points meet perfectly, additional algebraic constraints must be fulfilled among the phase conductivities.
This poses additional constraints to set up the linkage between the anisotropic and isotropic Green’s func-
tions. Specifically, we show that, for an infinite and a half-space and for all two-dimensional configurations,
the exact correspondence between the anisotropic and isotropic Green’s functions can always be con-
structed without any regard to the phase conductivities. And thus knowing the isotropic Green’s functions
will readily provide explicit expressions for anisotropic Green’s functions upon back transformation. For a
three- or higher-dimensional bimaterial and layered space, the correspondence can only be found if the con-
stituent conductivities satisfy further algebraic constraints. When these constraints are fully satisfied, then
the anisotropic Green’s functions can be exactly expressed in terms of those with isotropic constituents.
Interestingly, given the same dimensionality, it turns out that the constraint conditions for the configura-
tions of a bimaterial and a multilayered medium have the same forms.

The plan of the paper is as follows. In Section 2, the concept of an affine coordinate transformation is
introduced in the formulation and the Green’s function in conduction for an n-dimensional anisotropic
space is reconstructed. Exact expressions for the transformation matrix will be discussed in Appendix A.
Section 3 considers the Green’s functions for a half-space with three different kinds of homogeneous
boundary conditions. Sections 4 and 5 examine the Green’s functions for a bimaterial and a layered
medium, respectively. For reference, the isotropic Green’s functions of an infinite space, a half-space,
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and a bimaterial are recorded in Appendices B and C, which will be employed to construct the anisotropic
Green’s functions directly.

2. Green’s function for an infinite space

We first consider the Green’s function for steady-state conduction in an n-dimensional unbounded space.
The conductivity tensor k, is generally anisotropic satisfying the symmetry condition k;; = k;;. Here the sub-
script 7 in k,, designates the dimensionality of the space, e.g., n = 2 for a two-dimensional plane and n =3
for a three-dimensional space. Under steady-state conditions, the field equation for the temperature field
subjected to a point heat source at xy has the form

oG

k’.,i
Jaxi@xj +

o(x —x¢) =0. (2.1)
Here 6(x — xg) is the Dirac delta function and x = (x1,x»,...,X,) is a position vector in reference to a fixed
Cartesian coordinate. Note that throughout the paper sums over repeated indices, i,j = 1,2,...,n, are im-
plied. The unknown function G, known as the Green’s function, is the temperature field at the point x due
to a point heat source applied at x,. This field equation (2.1) is the standard oblique-derivative boundary-
value problem for a second-order partial differential equation. To resolve (2.1), we introduce an affine coor-
dinate transformation (Sokolnikoff, 1956; Milton, 2002)

X' = Ax, (2.2)
where the transformation matrix A does not depend on x. Using the chain rule of differentiations, we have
G G
= A, iy 2.3
ox;0x; U ax 23)

Since o(x — xp) =| J | d(x’ — x;) (DeSanto, 1992) with |J| being the absolute value of the Jacobian defined
by | J |=| ox}/0x; |= det A, Eq. (2.1) can be recast as
2

G
———+ | J|0(X —x[) =0. 2.4
lj ax;c ax/l + | | (X XO) ( )

Ak{k{jA
Suppose now that the transformation matrix A fulfills the condition
Ak, A" =o’l,, or, equivalently, ATA =o’k;’', (2.5)

where I, is an (n X n) unit matrix and « is an arbitrarily assigned constant. By taking the determinant of
(2.5), it can be readily seen that,

(detA)* = o™ det(k;'), or equivalently, detA ="/ det ké. (2.6)
Thus (2.4) can be recast as
", VG + 5(X —x})) = 0, (2.7)
entirely similar to that of an isotropic solid, where
@ 0 o
L, = detk!?, V?= e 2.8
fon = deti a2 el e (238)

At the present stage, there is no need to discuss the detailed solution of A that satisfies (2.5). We will
show how to obtain the explicit forms of A in Appendix A, which will be of crucial importance in subse-
quent developments. The above procedure suggests that the Green’s function for a general anisotropic
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conductivity k,, can be formulated similar to an equivalent isotropic conductivity of value «* "k,. Mathe-
matically, this implies that a general elliptic second-order partial differential equation can be transformed
into a canonical form, the Laplace equation. Since the Green’s function for the Laplacian operator can be
readily found in the literature, one can construct the anisotropic Green’s function G in the physical domain
(in x-coordinate) by back transformation from the x’ space.

Here we consider the Green’s functions for two-, three- and higher-dimensional spaces in turn. For con-
venience, we record the isotropic Green’s functions in Appendix B. We observe that, for a two-dimensional
plane, by letting n = 2 in (2.7), the equivalent isotropic conductivity is simply x,, irrelevant to the value of a.
Noting that

X = xg = [(x = x0) (' = x0)]"* = [A(x = x0)| = [(x = x0) "ATA(x — x0)]""?
= af(x — x0) "k, (x — x0)]'* = @R, (2.9)
the isotropic Green’s function G (B.1) can then be transformed back into the x-coordinates as
~ logR
Gh(x;X0) = — Y, (2.10)
Without loss of any generality, an additive constant in (2.10) is omitted.
For an n-dimensional space with » > 3, in reference to (B.6), we have
R27n 2 n/2
G (XiXg) = ——————, @, = forn 3. (2.11)

(n—2)w,x,’ " I(n/2)’

Here w,, denotes the surface area of the unit sphere in an n-dimensional space R" and I'(-) is the factorial
function. Note that the solutions for two- and higher-dimensional spaces are mathematically different. The
present formulation offers a simple and unified approach to construct the Green’s functions in conduction
for all dimensional spaces. We mention that the above results agree with the known solutions for an un-
bounded plane n = 2 and space n = 3 (Chang, 1977, Egs. (4.6) and (4.7)). To our knowledge, the solutions
for n> 3, (2.11), are new.

3. Green’s function for a half-space

In this section, we examine the anisotropic Green’s function in conduction for an n-dimensional half-
space. We suppose that the half-space occupies the region Q:0 < x; <oo. The field equation under
steady-state condition subject to a point heat source at X, has the form (2.1). Along the boundary of the
domain 0Q: F(x): x; = 0, three different kinds of homogeneous boundary conditions are considered. For
the first-kind boundary condition the temperature is set equal to zero along the boundary; for the sec-
ond-kind the normal component of heat flux is taken as zero; for the third kind a certain combination
of the temperature and the normal component of heat flux is set to zero. These boundary conditions are
expressed, respectively, as (Ozisik, 1993)

G',o=0, or k,VG'-n _,=0, or k,VG" -n+hrG"| ;=0 (3.1)

Here £ is the known convective heat transfer coefficient and n is the unit outward normal to the boundary
0Q. For distinction, we designate the corresponding Green’s functions associated with the three kinds of
boundary conditions by superscripts I, 11, II1.

To proceed, we again make use of the affine transformation (2.2). The field equation after the transfor-
mation remains the same as that for an unbounded space and given by (2.7). For the boundary conditions,
we need to discuss more on the transformation matrix A defined in (2.5). As shown in Appendix A, the
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transformation matrix A can be found from the Cholesky factorization, which takes the form of a lower
triangular matrix. Particularly, for all dimensionality #, it is seen that the component of 4, has the unique
value a/+v/k;;. To examine the boundary term under the transformation, we first note that the new bound-
ary of the transformed domain @', designated as 0€’, is simply x| = 0. Next, we need to express the three
kinds of boundary conditions in the x’-space. It is easy to see that the first-kind boundary condition re-
mains unchanged under the transformation. The key step in the formulation is the transformation of the
second-kind boundary condition, which will also be used in deriving the third-type boundary condition.
We derive (3.1), in the following steps

VF ATV'F V'F
k,VG-n=kA"VG- (- ——) =-kATVG- = —Ak,A'V'G-
VG m=kAY ( |VF> VO TYE] VO ITE]
V'F \ | VF| | V'F |
=o’V'G- | — = o’ V'G-n). 3.2
* IVF|) [VF] °‘|VF\( n) (3.2)
Since
Fx)=FA'X)=x = ot’lkélx'l =0, (33)
there follows
| V'F | 144
|VF| =o k. (3-4)

With these developments (3.2)—(3.4), the three different kinds of boundary conditions (3.1) are then trans-
formed into

GI|X,]:0 =0, V" =0, v'ét .o +ﬁGIH|ﬂl:0 =0, (3.5)
where n’ is the unit normal to 0Q’ and
P =ho 'k (3.6)

Thus, (2.7) along with the boundary conditions (3.5) in the x’-space become exactly the same as those for
the corresponding half-space Green’s functions with an isotropic conductivity. Since the latter solutions can
be found in the literature, see Eqgs. (B.2), (B.3) and (B.7)—(B.9) of Appendix B, one can thus obtain the
anisotropic Green’s function in the physical domain x without resolving the field equations.

Here we derive the half-space Green’s functions for two-, three- and higher dimensions. For a two-
dimensional plane, the half-plane Green’s functions related to the first- and the second-kind of boundary
conditions are obtained as

logR logR;

Gop (X %0) = =5 == (3.7)

where R has been defined in (2.9) and R, is defined as
aR; = |x' — xj| = |Ax — RyAX|. (3.8)

Here R; is a (2 x 2) reflectional matrix defined in Appendix B. The Green’s function corresponding to the
third-kind boundary condition requires few more steps of derivation. In the transformed space, the Green’s
function in an equivalent isotropic medium was recorded in (B.3) and (B.4). To transform (B.3) back into
the physical space x, we see that the first two terms in (B.3) were just R and R; given in (2.9) and (3.8). The
third term is, however, more complicated and can be formulated as follows. We first change the dummy
index # in the x'-space to a dummy index ¢ in the x-space by noting n = 4, and x; = Ax,. Thus we have



4104 T. Chen, H.-Y. Kuo | International Journal of Solids and Structures 42 (2005) 4099-4114

() = —2pexp(Anp + &), x:;‘=( Ane ) (3.9)

0 0
Anx + Axnx;

and

A log | X — x| = . log|x —x!
J AR e e B e

= 5 0, ¢ log | X' —x; p

—/m —2pexp(p(x] + '))2—nk <
T lelX =%l 3.10
*/0 —2pexp(—p )277% g (3.10)

where p = ik, and { = —x? — £ Further we can write
_ Ap (= —
X — x| =[x — “(0 o Cf) = |Ax — RyAX) + {Ae| = aR;, (3.11)
A21X1 +A22X2

with e; = (1,0)". Thus the Green’s function for a half-space with the third-kind boundary condition can be
expressed as

logR logR; *© log R;
1| _ _ _ 12
Gop (X; %) 2nK, 27Tk /0 h(&) 27y dé, (3.12)
where
h({) = —2pexp(—p{). (3.13)

We mention that the quantities R; and R;, after some manipulations, can be simplified as

0 0
R =R+ —4;“‘ L R=r BT gk)(le *0), (3.14)
11 11

Egs. (3.7) and (3.12) recover the known Green’s function for an anisotropic half-plane (Chang, 1977,
Egs. (5.9) and (5.11)).
For an n-dimensional space with n > 3, the half-space Green’s functions for conduction have the forms

111 R R
G,p (X;Xo) = = Do, T 1= ’2)%}(” ; (3.15)
and
-n —n o0 2—n
Gp(X;Xo) = (n _R;)wn;c,, e _R§>wn,<n + /0 h(C) (n_%)wmdc, (3.16)
where now
oR; =| Ax — AR, X, |, oR: =| Ax — R,Ax, + {Ae, |, (3.17)

ande = (1,0, ..., O)le. For n =3, Egs. (3.15) and (3.16) also agree with the known Green’s functions for

a half-space (Chang, 1977, Egs. (5.4) and (5.6)). But here we remark that Chang’s derivations (1977) are
rather tedious. To our knowledge, the Green’s functions for n > 3 are new in the literature.
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4. Green’s function for bimaterials

This section is concerned with Green’s functions for a bimaterial. We consider that the bimaterial is com-
posed of two anisotropic half-spaces bonded along x; = 0 in an n-dimensional space. The material A occu-
pies the region 2 4: x; > 0 and material B the remaining half-space Qp: x; < 0. We suppose that a point heat
source is prescribed at a point X inside the region 4. The field equilibrium equations under steady-state
conditions are

0’G"
k;'ax,-ax, +6(x—x9) =0, forxeQ,,
(4.1)
2 OC7 0, f Q
’/m =V, or X € {2p.

We assume that the interface, J: x; = 0, is perfectly bonded, which means that the temperature and the nor-
mal component of heat flux are continuous across the interface J

GA|J = GB|J7
A B (4.2)
kK!'VG' -n|, =k’VG® -nl,.
For convenience, we can rewrite the continuity condition (4.2), as
oG* oG*
kK— =K — 4.3
lj Ox; l Ox; =0 (4.3)
To proceed, let us introduce affine coordinate transformations
X =Ax, forxeQy, X" = Agx, for x € Qp, (4.4)
for the regions A and B, in which
AJA, =2k, AJAs = 2(KE) . (4.5)
Following the routes outlined in (2.3) and (3.2), the field equations are changed to
CRIVEGT +6(x —x) =0, for x' € Q, 46)
" KEVGE =0, for x' € Q) '
and the interface continuity conditions become
oG! oG*
Gloso=Glusgs o/ ], T Ky ., (4.7)
X1: Xlz

Note that in deriving (4.7),, we have made use of the relations (3.2) and (3.4). Also, in line with (2.8),
we have defined the following short notations

1 Iy 12 62 62 62
K, :det(kn)l, ]:A,B7 \Y% :axa’2+@++@ (48)
For later convenience, we will also define
m’ = (—1)" detk?, (4.9)

where k” is the (n — 1) x (n — 1) submatrix of the n-dimensional conductivity matrix k,, by deleting the row
and the column containing the element (k,);.



4106 T. Chen, H.-Y. Kuo | International Journal of Solids and Structures 42 (2005) 4099-4114
4.1. Two-dimensional plane

Here we first consider the two-dimensional plane, i.e., n = 2. In this case, the transformation matrix A
can be found explicitly as (see Appendix A)

1
- 0
1
A=ua m w2 | (4.10)
KKy K1Kj
where, in accordance with the definitions in (4.9) and (4.8), x; = V/ki1, k2 = y/kiikay — ki,, m¥ =k, and
m3' = —ky,. Here we have omitted the material designation 4 and B. To proceed, first upon the transfor-

mation (4.4) it is evident that the interface x; = 0 is mapped, respectively, onto x| = 0 and x| = 0. Next, the
points (0, x,) along the interface J in the x-space are carried onto points (0,x5) in the x’-space and to points
(0,x4) in the x"-space, via the transformation (4.4), in which

X = o (k) iy, X = (k) iy, (4.11)

We need to enforce the condition x5 = xj so that the interfacial points remain intact under the transforma-
tion. A simple choice that fulfills the condition is

A
— A

op

: (4.12)

Fl i

2
™ &

Upon substitution (4.12) back into (4.6) and (4.7), the governing set for the transformed fields becomes
KV?G' +6(x' —x)) =0, forx €,

4.13
ng//ZGB — 07 for X// c QZ ( )
and the interface conditions reduce to
oG4 oG?
GA / = GB " KAi = B 4,14
‘xI:O ‘XI:O’ 2 ax/l xi:o K2 ax/l/ x[]/zo ( )

Remarkably, the system becomes now exactly identical to that of the Green’s function for a bimaterial with
isotropic conductivities, x5 and x5, in each half-plane. For the latter solutions, see Egs. (C.1) and (C.2).
Thus by back transformation, we find the Green’s function for an anisotropic bimaterial in the physical
space x as

logR, logRy, k) — K3

A . _
Cop (X X0) = 21K 2nky K5 + K57 (415)
log R
2D(X’ XO) R(KE‘ n Kg) ’ ( )
where
RA :| AA(X — X()) |, RA,,' :‘ AAX — RzAAX() ‘, RB :| ABX — AAX() | (417)

We have verified that the above expressions for the Green’s functions for a two-dimensional bimaterial ex-
actly agree with a mathematically equivalent problem of Green’s function of anti-plane elasticity (Ting, 1996),
in which the Green’s function was derived using the Stroh formalism. Also, our results are verified with the
Green’s functions in conduction of a two-dimensional bimaterial by Berger et al. (2000) in which the solutions
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were derived from the Fourier integral transform. The present formulation could be viewed as an alternative
approach for the considered two-dimensional case and yet it is comparatively simple and straightforward.

4.2. Three-dimensional space

Next we consider that the bimaterial is constituted by two three-dimensional half-spaces. Again, the
interface is characterized by x; = 0. In this case, the transformation matrix A has the explicit form

1
— 0 0
K1
21 22
A=o| 2 T | (4.18)
KiKy K1k
31 32 33

ms ms my

KoK3  KaK3  KoK3
Upon the transformations (4.4), the interface x; = 0 is again mapped, respectively, onto x; = 0 and x| = 0.
Next, for the problem to be physically realistic, we need to ensure that the points (0, x,, x3) along the inter-
facial plane J in the x-space are carried onto the same position (0,x5,x}) in the x’-space and (0, x},x%) in the
x"-space, namely x, = x; and x} = x}. For this to be true, it is necessary that the components of 4,5, 433 and
Az be identical for the two materials 4 and B (4.4). This implies that the conductivities of the two constit-
uent phases and the parameters o4 and oz must fulfill the algebraic constraints

A m22B SV 32 3 3B
%y A2KA:°‘B BB %4 A3KA:aB B B 4 A3A:a3 3337 (4.19)
K115 K115 Ky K3 Ky K3 Ky K3 Ky K3
or, equivalently,
224 324 334
m; my ms
A4 A4 4.4
KKy _ Koky KKy O (4.20)
2B~ , 3B  ,33B " :
m; m; m; o0y

KRS KIRS KgK

We note that the first equality of (4.20) is exactly the proportional ratio (4.12) that we selected for a two-
dimensional plane. In view of the constraint condition, it is seen that if the phase conductivities fulfill the
first two equalities in (4.20), then the ratio of /a4 is fixed accordingly. This means that only one of the two
scalars, o4 and ap, can be arbitrarily assigned. In particular, if one chooses oy = x4 /x4, then it follows that
ap = K5 /K5, Interestingly, with these choices, the governing systems (4.6) and (4.7) are then reduced to
(4.13) and (4.14), in a form entirely identical to that of a two-dimensional bimaterial. Of course here the
coordinates x’ and x” are for three-dimensional spaces. Note that in deriving (4.7), we have made use of
the connections (4.20). Also, it should be mentioned that for a given positive-definite conductivity matrix
for material A, we have found numerically that there exist numerous (positive-definite) conductivity matri-
ces for material B that fulfill the constraint (4.20). In summary, for the Green’s function of a three-dimen-
sional anisotropic bimaterial, if the conductivities of the two phases fulfill the first two equalities in (4.20),
then one can adjust the ratio of ap/o 4 to satisfy (4.20). Under such circumstances, the affine transformation
(4.4) with (4.5) will transform the physical problem into that for a three-dimensional isotropic bimaterial
with phase isotropic conductivities given by x5 and 5. As the Green’s function for an isotropic bimaterial
are recorded in (C.3) and (C.4) ! by mapping back onto the physical domain, we can obtain the Green’s
function for a three-dimensional anisotropic bimaterial as

! We are not aware of the existence of Green’s function in conduction for three- and n-dimensional isotropic bimaterials. We have
derived the Green’s functions for a three-dimensional isotropic bimaterial using an integral transform method. The process, though
straightforward, is rather tedious. For brevity, only final solutions are recorded in Appendix C.
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1 1 wd — B
Gip (X;Xo) = — 421
3 (X Xo) 4niciRy + AniRy; k5 + K5 (4.21)
1 25
Gj s 4.22
Bo(%,%0) = Gy (422)
where R, and Rp have the same expressions in (4.17) and
Ry =| Aux — R3AXg |. (4.23)

4.3. Higher-dimensional space

The foregoing concept can be extended to a higher-dimensional bimaterial. For an n-dimensional space,
the transformation matrix A can be proven as

1

K1
21 22
m m
-2 2 0 0
K112 K1K2
31 32 33
A=oa| ™ my my o 0 . (4.24)
K2K3 K2K3 K2K3
nl n2 n3 nn
m, n, n, L m,
Kn—1Kp Kp—1Kp Ky—1K, Kn—1Ky

To ensure that the interfacial points x; = 0 will perfectly match after two different affine transformations
(4.4), we need to demand that all the elements of A except the first column for 4 4 and A4 g be identical. That is,

m%2A ngA mzZA m§3A mz3A mznA

K1_K§ZK2K3 — ... :Kﬁ—l’cﬁ :K2K3 — ... :Kﬁ—l’cﬁ _ ”.:K;‘—lkﬁ _% (4.25)
m2 m;zs m mi® m m" . .
ki) K3xd AR VA 4 Kp k8 K1k

These constitute a total of n(n — 1)/2 conditions among the phase conductivities kA kB Similar to the
reasoning for the three-dimensional case, the value of o, can be arbitrarily ass1gned Wlthout loss of
any generality, one can choose oy = (k! /K4 )" 2. Under such circumstances, as in two- and three-dimensional
bimaterials, the governing system for the Green’s functions of an n-dimensional anisotropic bimaterial is ex-
actly the same as that for an n-dimensional isotropic bimaterial with equivalent conductivities x5 and x5. As
the latter solutions have been found in Appendix C, we thus can write the anisotropic Green’s functions in
the physical space x as

— 2—n
R B d-nd
)
(n—=2)w,xi  (n—2)w,k5 k5 + K5

Gop(X;%0) = (4.26)

2—n B
R 2K5
B A B
(n = 2)w,k5 15 + 15

Gp(X;X0) = (4.27)
where again R4, R4 ; and R have been defined in (4.17), except that the matrix R, now should be replaced
by R,. The Green’s functions for three- and higher-dimensional bimaterials, though only applicable to
restricted systems, are not known in the literature (T.C.T. Ting, private communication).
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5. Green’s functions for a layered space

In this section we examine Green’s functions in conduction for an n-dimensional, anisotropic, layered
medium. The medium consists of m different constituent layers which are all perfectly bonded together.
The pth layer, with the conductivity tensor denoted by kEf’), occupies the region Q,: h, < x; < h,_y,
p=12,....m, for a referenced Cartesian coordinate. Here we have set #4,, — —oco and hy — oo, so that
the layered medium occupies the full space. Suppose that a point heat source is applied at a point x inside
the gth layer Q,. The field equilibrium equations under steady-state conditions are

2GP)
n oG _ _
ij m—‘répqé(x—)(o)—o, fOfXEQP, XOGQq,p—l,...,m, (51)
where 9, is the Kronecker delta. The interface J,: x; =#h,, p=1,2,...,m — 1, between the two adjacent
regions, Q, and Q,,, is perfectly bonded so that one has

G(P)| — G(P+1)|
"’ o (5.2)
kPVGY -n|, = kTGP n|,

To proceed, we make use of the affine transformation. But, in contrast to (4.4), we now introduce

X =APx +a? forxe @, APTAY = oci(kff’))_l, (5.3)

for the region Q, with an additional shifting (n x 1) vector a?”. Here x'?), p = 1,...,m, is the transformed

coordinate for the region Q, 2 and a? is an n-dimensional column vector to be determined. This implies
that each region Q, has its own transformation matrix A” together with a shifting vector a?”’. For conve-
nience we shall denote the transformed region for the region Q,, as Q;. We shall see that a layered space will
remain as a layered space after the transformation (5.3), but with different spacings. As before, the idea is to
transform the physical problem into a transformed domain with isotropic constituents. To resolve the field
equations for the transformed configuration, it is necessary that the interfacial points J, between any two
adjacent regions €, and Q,,; must meet perfectly upon the transformation (5.3). That is we need to demand
the equality

hP hP
X2 X2

AP +a? =AY a®t) ) forp=1,....m— L. (5.4)
Xn Xn

Since Afj‘.’ ) is a lower triangular matrix (4.24) and also due to the fact that x,,. .., x, could be arbitrary, the
conditions (5.4) are satisfied if and only if the phase properties satisfy the algebraic constraints

APV =47 2<i<n 2K/ <, (5.5)

ijo
and that the shifting vectors are selected as

o'V = al) + (47 — A7), i=1

yeeey N (5.6)

2 Note that in Section 4, the transformed coordinates for region A and region B for a bimaterial are, respectively, designated by x’
and x”.
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Recalling (4.24), (5.5) can be rephrased as

m ij(2) )
o : =0 = =0 : ,
W T

2<i<n 2<j<i (5.7)

The above condition implies that the phase conductivities for any two constituent regions need to fulfill the
constraints (4.25). Further, Eq. (5.6) provides a recurrent formula for the determination of a?, p =2, .. .. m.
Without loss of any generality, one can set a'') = 0 in (5.6) so that the components of a®”’ can be explicitly
written as:

p—1 o
d+1
Z( (M)hd, p=2,....m,
1

. p—1 mzl(d) m (d+1) (5'8)
p) __ i : —
a; = Olg — 7 @)@ adHW hey, 2<i<n, p=2,...,m

d=1 1K i—1 i

Under the conditions (5 4) the transformed interfaces J’ remain as planes (hyper-planes), described as
J;:x/l(‘" —xll(pﬂ) n h —|—a p=1,....m—1 (5.9)
1
Here the selection of the constants o, will be discussed later. Back to (5.1), upon the transformation (5.3),
the field equation is now changed to
KPV2G + 5,,0(x? —x\P) =0, for X e Q, (5.10)

entirely similar to that for an isotropic layered medium if one chooses o; = (kV/ Kgl))"*z. Next, the interface
continuity conditions (5.2) become

) 0
ax/](m

e 067
2 S
't

GP‘J]’, = GP+I|J;,» K(zp (5.11)

! !
Ip Ip

The transformed governing system (5.10) and (5.11) is exactly the same as that of an n-dimensional
Green’s function of a multilayered medium with isotropic constituents. If the isotropic Green’s function
for a layered medium can be known a priori, then the anisotropic Green’s function for a layered medium,
fulfilling the constraints (5.7), can be readily obtained without further derivations. We emphasize again that
the exact linkage between the anisotropic and isotropic layered media and bimaterials depends crucially on
whether the conductivities of the constituent layers satisfy the constraint conditions (5.7).

To further elaborate the conditions, we focus more on the common situations for two- and three-dimen-
sional spaces. For a two-dimensional case, (5.7) simply follows

(1) )
ol =y = = Oy (5.12)
K

&

This suggests that one can select the value of «, as

o)

o

% 5
0

=
I

ul\)

3

5.13
PR (5.13)

e
)

so that (5.12) is identically satisfied. In other words, the linkages between the Green’s functions of
anisotropic and isotropic layered media can always be proven, without regarding to the values of phase
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conductivities. We mention that a similar method was adopted by Ma and Chang (2004) for a two-dimen-
sional layered medium with a focus on the integral transform solution for the isotropic Green’s functions
for a layered medium. Here our framework is more general for an arbitrary dimensional space.

For a three-dimensional space, the condition (5.7) becomes

22(1) 22(2) 22(3) 22(m)
o m, —a m, = m, _ — m,
1 = = =T ST
D P P e
32(1) 32(2) 32(3) 32(m)
ms ms ms ms
oy = o =03 = =y, (5.14)
K;])K(Bl) K;z)K(Bz) Kg3) Kgs) K(zm)Kgm
) m§3(1) ) m;s(z) . m§3(3) ) m§3<m)
I = =03 = = Oy
Kél)Kgl) K;z)ng) ng) K(33) d K(zm)K(Sm)
which implies that the phase conductivities must fulfill the constraints
BORCENC) W D), 1)
1 2 3
S S G NS TR B § (5.15)
T D T gy T '
Kf3 K3 KI3 Kf3 1 2 3 m

Note that we have used the identities m3* = k7 and m3® = &3 to simplify the relations. Apparently, this rela-
tion will not be automatically fulfilled for any given three sets of conductivity tensors and thus (5.15) poses
a restriction for the applicability of the exact linkage. To our knowledge, the linkages for the three- and
higher-dimensional layered spaces are new. Yet, we are not aware of the existence of explicit solutions
for the Green’s function of an isotropic layered medium for three- and higher-dimensional spaces. As
the latter boundary valued problems are indeed quite complicated, it is not our objective to resolve the iso-
tropic Green’s functions for an n-dimensional layered medium in this work. We simply point out that the
anisotropic Green’s functions can be obtained in principle, if the isotropic one can be known a priori and
the constraints (5.15) are fulfilled.

6. Concluding remarks

We have shown that the n-dimensional anisotropic Green functions in conductions for an unbounded
space and a half-space can always be obtained from those of the isotropic ones. For bimaterials and
multilayered spaces, the exact links can also be found for two-dimensional planes. But for three- and
higher-dimensional spaces, the linkages can only be proven if the constituent conductivities satisfy further
algebraic constraints. Of course, the latter restriction does not necessarily mean that the corresponding
Green’s functions do not exist; it simply reflects the fact that there is no such simple linkage between the
two configurations. We note that the present affine coordinate formulation, incorporating with a specific
transformation matrix relevant to the Cholesky decomposition, offers a simple feature in dealing with
various boundary valued problems with straight boundaries. This is clearly a major strength of the method.
It may seem plausible that similar problems for cylindrically or spherically anisotropic solids with circular
or spherical boundaries or interfaces can be looked into in future studies. We finally remark that the affine
transformation method can also be applied to resolve the Green’s function for an unbounded exponentially
graded solid (Kuo and Chen, 2005). But, in general, the applicability of the method to a generally function-
ally graded solid needs to be studied case by case.



4112 T. Chen, H.-Y. Kuo | International Journal of Solids and Structures 42 (2005) 4099-4114
Acknowledgement

This work was supported by the National Science Council, Taiwan, under contract NSC 93-2211-E006-
005.

Appendix A. How to find the transformation matrix A

In this Appendix, we discuss the explicit forms for the matrix A that satisfies the condition (2.5). To do
this, we first recall the Cholesky decomposition theorem in matrix theory (Horn and Johnson, 1985): any
n X n positive-definite symmetric matrix M can be uniquely factorized into a product M = BB”, where B is
a positive-definite lower triangular n X n matrix. Now back to (2.5), with the decomposition theorem, if
one sets M = o 2k,,, then the transformation matrix A can be determined as

A= BE}llolesky' (A 1)

Note that B is a positive-definite lower triangular matrix, and so is A. We mention that the method of
Cholesky decomposition is originally used to provide a systematic process for solving a linear system in
which the coefficient matrix is symmetric and positive-definite. An iterative procedure for Cholesky decom-
position is outlined in Horn and Johnson (1985). Specifically, the transformation matrix A can be explicitly
written as in (4.10) for a two-dimensional plane, (4.18) for a three-dimensional space, and (4.24) for an n-
dimensional space. We mention that, for » = 2 and 3, the above expressions for A can also be derived from
some symbolic algebra, e.g., MAPLE. For a higher-dimensional space, the expression (4.24) was made by a
simple conjecture and has been correctly verified.

Appendix B. Green’s functions for an isotropic half-space

Green’s functions in conduction for an isotropic half-space (2.7) with boundary conditions (3.5) are re-
corded in the Appendix. To distinguish the x-coordinate employed in the main text for a general aniso-
tropic space, here we use y as the referenced (isotropic) coordinate. The material is isotropic in which its
conductivity tensor is denoted by kI,,, where 1, is a unit (n X n) matrix. We assume that a point heat source
is prescribed at a certain point yo. For a two-dimensional infinite plane, the Green’s function is known as
(see for instance, Greenberg, 1971, p. 64, p. 81, p. 86 and p. 91)

% log |y —y
Gon(¥;¥o) = —%- (B.1)

For a half-plane which occupies the region 0 < y; < co, the Green’s functions are

logly—y |, log|y—v]

LI, -
Gop (¥;¥) = Ly Ly (B.2)
for the first- and second-kind of homogeneous boundary condition, and
log|y—yy| log|y—vyy| [ logly—y,l|
11 (. _ ol _ ol _ n
Gihyiv) =~ 2L e R OE et (B3)

for the third-kind boundary condition, where

Yo=(=009" vi=m0)", h(n) = —-2pexp(p( +n))- (B.4)
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This means that y; is the image point of the source point y, relevant to the plane y; = 0. For convenience,
we may write yj = Ryy,, where R, is a (2 x 2) reflectional matrix with respect to y; = 0, given by

R, = (‘01 (1)) = diag(—1, 1). (B.5)

For an n-dimensional space (n > 3), the fundamental solution for Laplace’s operator can be found in
John (1982, p. 97)

|y =yl 202
G2 (yiy,) = Yol ) — . forn =3, B.6
nD(ya yO) (n o 2)(1),,](’ w I—v(n/z) or n ( )

where w, denotes the surface area of the unit sphere in R”. By the method of image, the Green’s function for
the first- and second-kind boundary conditions are

2—n i2—n
Gy _ |y — Yol |y — Yol B.7
0 (Y Yo) (n—Z)w,,k:F(n—Z)w,,k’ (B.7)
where
v = (=209, ...,0°)", or equivalently y) =R,y,, (B.8)

and R, is the (n X n) diagonal matrix defined by diag(—1,1,...,1).
For the third-kind boundary condition (3.5), the Green’s function can be expressed in the following mod-
ified image form (Greenberg, 1971, p. 86)

—n i12—n _ i|2—n
YN A e 1 +f T (B9)
mDA SO — D)k T (n— 2wk ) (n—2)w,k '
where /(1) is defined as (B.4); and
Yo =139, (B.10)

Appendix C. Green’s functions for an isotropic bimaterial

In this Appendix we give the Green’s functions for isotropic bimaterials. The bimaterial is composed of
two anisotropic half-spaces bonded along y; =0 in an n-dimensional space. The material A occupies the
region y; > 0 and material B the remaining half-space y; < 0. We suppose that a point heat source is pre-
scribed at the point y, inside the region 4. The Green’s functions can be obtained analytically as

A ovy_ logly—y,| log|y—y| kA—kB>
GZD(yayO) - an,q 27IkA (kA —|—kB ) (Cl)
Gon (Y5 Yo) = —%y—;%, (C.2)

for a two-dimensional plane, where yj, has been defined in (B.4), and

Cy-y[T K-y

A .
GnD(y’yO) - (I’l _ Z)w,,kA + kA + kB (n 7 2)60,,kA ) (C3)
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and

B (.. _ 2k” |y_YO‘27n
GnD(yvyO) _kA _|_kB (n _Z)O)nkB’

for an n-dimensional space, where n > 3, and yj, has been defined in (B.8).

(C.4)
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